

DA-003-001663

B. Sc. (Sem. VI) (CBCS) Examination

April / May - 2015

S-602 : Statistical Quality Control & Operation Research

Faculty Code: 003

Subject Code: 001663

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

20

Instructions: (1) Q. No. 1 carries 20 marks.

- (2) Q. No. 2 and Q. No. 3 carries 25 marks each.
- (3) Write the answer of MCQ in the answer sheet.
- (4) Right side figures indicate marks of that question.
- 1 M.C.Q.:
 - (1) For a maximization problem, the objective function coefficient for an artificial variable is:
 - (A) +M
 - (B) –M
 - (C) Zero
 - (D) None of these
 - (2) In the optimal Simplex table, $C_j Z_j = 0$ value indicates :
 - (A) unbounded solution
 - (B) cycling
 - (C) alternative solution
 - (D) infeasible solution

- (3) The graphical method of LP problem uses
 - (A) objective function equation
 - (B) constraint equation
 - (C) linear equations
 - (D) All of these
- (4) A feasible solution to an LP problem:
 - (A) must satisfy all of the problem's constraints simultaneously
 - (B) need not satisfy all of the constraints only some of them
 - (C) must be a corner point of the feasible region
 - (D) must optimize the value of the objective function
- (5) If two constraints do not intersect in the positive quadrant of the graph then
 - (A) problem is infeasible
 - (B) the solution is unbounded
 - (C) one of the constraints is redundant
 - (D) None of these
- (6) For maximization LP problem, the Simplex method is terminated when all values :
 - (A) $C_j Z_j \le 0$
- (B) $C_j Z_j \ge 0$
- $(C) \quad C_j Z_j = 0$
- (D) $Z_j \le 0$
- (7) If dual has an unbounded solution, primal has:
 - (A) no feasible solution
 - (B) unbounded solution
 - (C) feasible solution
 - (D) None of these

	(supplies) and n-columns (destinations) is feasible if number of positive allocations are :					
	(A)	m+n	(B)	$m \times n$		
	(C)	m+n-1	(D)	m+n+1		
(9)		re were to use opport to test optimality, i		y cost value for an unused ould be:		
	(A)	equal to zero				
	(B)	most negative num	nber			
	(C)	most positive num	ber			
	(D)	any value				
(10)	If tl	here were n workers	s and	d n jobs there would be:		
	(A)	n! solutions	(B)	(n-1)! solutions		
	(C)	$(n!)^n$ solutions	(D)	n solutions		
(11)	Var	iation in the items p	rodu	ced in a factory may be due to:		
	(A)	chance factors	(B)	assignable causes		
	(C)	both (A) and (B)	(D)	None of these		
(12)	Con	trol charts consist o	of:			
	(A)	three control lines				
	(B)	upper and lower co	ontro	l limits		
	(C)	the level of the pr	cocess	3		
	(D)	All of these				

The solution to a transportation problem with m-rows

(8)

(13)	Mai	n tools of statistical o	qual	lity control are:
	(A)	shewhart charts (B)	acceptance sampling plans
	(C)	both (A) and (B)	D)	None of these
(14)	Cen	t percent inspection is	s pı	referable when :
	(A)	a defective item may	y ca	nuse danger to life
	(B)	a defective item may	sto	p the function as a whole
	(C)	the incoming item a	re (of very poor quality
	(D)	all of the above		
(15)	The	small fraction of defec	tive	P_1 , on the basis of which
	a lo	t is not rejected except	for	r a small number of times
	is ca	alled:		
	(A)	Lot tolerance percent	tage	e defective (LTPD)
	(B)	Rejecting percentage	de	fective
	(C)	Acceptance quality le	eve]	l (AQL)
	(D)	None of these		
(16)	OC o	curve reveals the ability	of	the sampling plan to distinguish
	betv	ween:		
	(A)	good and bad lots		
	(B)	good and bad sample	ing	lot
	(C)	good and bad produc	ct	
	(D)	All of these		
(17)	In 2	\overline{X} -chart UCL = 256.3,	$\overline{\overline{X}}$	= 250 so LCL =
	(A)	243.7	В)	240
	(C)	234.7	D)	230

	(18)		charts is u	sed	for controlling number of				
		defects in a T.V. Sets.							
		(A)	$\overline{X} - R$	(B)	C				
		(C)	P-np	(D)	None of these				
	(19)		distribution	is use	ed in the construction of				
		P-ch	nart.						
		(A)	Normal	(B)	Binomial				
		(C)	Poisson	(D)	None of these				
	(20)		distribution is	used	in the construction of				
		P-ch	nart						
		(A)	Normal	(B)	Binomial				
		(C)	Poisson	(D)	None of these				
2	(a)	Ans	wer the following q	uesti	ons: (any three)	6			
	、 /	(1)	_	ning	of Low spot point with				
		(2)			tween P and np chart.				
		(3)	Define acceptance		-				
		(4)	What is meant by	Qua	lity of Product ?				
		(5)	Write the limits o	$f \bar{X}$,	R, P and np charts.				
		(6)	Define optimal fea	sible	solution in LP problem.				
	(b)	Ans	wer the following q	uesti	ons: (any three)	9			
		(1)	Explain Double sa	mpli	ng plan.				
		(2)	Explain Consumer	risk					
		(3)	Explain LTPD.		0.000				
		(4)			form of LP problem.				
		(5)			following LP problem :				
			Maximize $Z = x_1 - x_2$	$x_2 + 3$.	r_3				
			Subject to constra	ints :	$x_1 + x_2 + x_3 \le 10$				
					$2x_1 - x_3 \le 2$				
					$2x_1 - 2x_2 - 3x_3 \le 6$				
				an	d $x_1, x_2, x_3 \ge 0$				

- (6) Find the probability of accepting a lot if the fraction defective of lot is 0.05 using single sampling plan (100, 8, 1) by using Hyper Geometric distribution. Also obtain AOQ, ATI and ASN.
- (c) Answer the following questions: (any two)

10

- (1) Discuss different assignable cause of variations.
- (2) Short note: Theory of Runs.
- (3) Explain: ATI and derive function for single sampling.
- (4) Obtain solution of the following Transportation problem by Vogel's method:

Source	D_1	D_2	D_3	D_4	Supply
O_1	19	30	50	10	7
O_2	70	30	40	60	9
O_3	40	8	70	20	18
Requirement	5	8	7	14	34

(5) Obtain optimum solution of dual from the following LP problem solution:

Maximize :
$$Z = 3x_1 + 4x_2$$

Subject to constraints
$$2x_1 + 3x_2 \le 16$$

 $2x_1 + x_2 \le 8$

and
$$x_1, x_2 \ge 0$$

- 3 (a) Answer the following questions: (any three)
- 6

- (1) What is variation in production?
- (2) Define charts for variable.
- (3) Explain (1200, 150, 2).
- (4) Write the assumption of LP problem.
- (5) Define objective function in LP problem.
- (6) Define constrain in LP problem.
- (b) Answer the following questions: (any **three**)

9

- (1) Short note: Ideal OC curve.
- (2) Explain Producer risk.
- (3) Explain AQL.
- (4) Explain Transportation problem with example.
- (5) Use Graphical Method to solve the following LP problem:

Maximize : $Z = 15x_1 + 10x_2$

Subject to constraint: $4x_1 + 6x_2 \le 360$

 $3x_1 \le 180$

 $5x_2 \le 200$

and
$$x_1, x_2 \ge 0$$

(6) Solve the assignment problem that the objective is to minimize the total cost:

	Machine			
Work	P	Q	R	
X	21	24	31	
Y	11	19	17	
\mathbf{Z}	15	17	13	

(c) Answer the following questions: (any two)

10

- (1) Write the difference between $\overline{X} R$ charts and P-np charts.
- (2) Derive OC function for single sampling plan.
- (3) For single sampling plan (2000, 200, 2), obtain OC function by using Poisson distribution. Also find producer's risk and consumer's risk if

$$AQL = P_1' = 0.05$$
 and $LTPD = P_2' = 0.035$ [e⁻¹ = 3.368, e⁻⁷ = 0.000912]

(4) Obtain solution of LP problem by Simplex Method Maximize : $Z = 40 x_1 + 50 x_2$

Subject to constraints $2x_1 + 3x_2 \le 3$

$$8x_1 + 4x_2 \le 5$$

and
$$x_1, x_2 \ge 0$$

- (5) Obtain a solution of the following transportation problem by the method :
 - (1) North-West corner
 - (2) Minimum Row.

	Destination			
Source	A	В	\mathbf{C}	Supply
I	6	8	4	6
II	4	9	3	10
III	1	2	6	15
IV	5	7	2	4
Requirement	14	16	5	35